Search results
Results From The WOW.Com Content Network
Synaptic plasticity rule for gradient estimation by dynamic perturbation of conductances In neuroscience , synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. [ 1 ]
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
These changes are called synaptic plasticity and may result in either a decrease in the efficacy of the synapse, called depression, or an increase in efficacy, called potentiation. These changes can either be long-term or short-term. Forms of short-term plasticity include synaptic fatigue or depression and synaptic augmentation.
According to the BCM model, when a pre-synaptic neuron fires, the post-synaptic neurons will tend to undergo LTP if it is in a high-activity state (e.g., is firing at high frequency, and/or has high internal calcium concentrations), or LTD if it is in a lower-activity state (e.g., firing in low frequency, low internal calcium concentrations). [1]
Diagram of a chemical synaptic connection. In the nervous system, a synapse [1] is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell.
Synaptic plasticity has long been implicated for its role in memory storage and is thought to play a key role in learning. [ 4 ] [ 3 ] However, during developmental periods, synaptic plasticity is of particular importance, as changes in the network of synaptic connections can ultimately lead to changes in developmental milestones.
These are often divided into short-term plasticity and long-term plasticity. Long-term synaptic plasticity is often contended to be the most likely memory substrate. Usually, the term "neuroplasticity" refers to changes in the brain that are caused by activity or experience. Connections display temporal and spatial characteristics.
Connectomics is the production and study of connectomes: comprehensive maps of connections within an organism's nervous system.More generally, it can be thought of as the study of neuronal wiring diagrams with a focus on how structural connectivity, individual synapses, cellular morphology, and cellular ultrastructure contribute to the make up of a network.