When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Schaffer function 2 - multi-objective.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Schaffer_function_2...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  3. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If all the hard constraints are linear and some are inequalities, but the objective function is quadratic, the problem is a quadratic programming problem. It is one type of nonlinear programming. It can still be solved in polynomial time by the ellipsoid method if the objective function is convex; otherwise the problem may be NP hard.

  4. File:Poloni's two objective function.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Poloni's_two_objective...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  5. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The function f is variously called an objective function, criterion function, loss function, cost function (minimization), [8] utility function or fitness function (maximization), or, in certain fields, an energy function or energy functional. A feasible solution that minimizes (or maximizes) the objective function is called an optimal solution.

  6. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In the above equations, (()) is the exterior penalty function while is the penalty coefficient. When the penalty coefficient is 0, f p = f . In each iteration of the method, we increase the penalty coefficient p {\displaystyle p} (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next ...

  7. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In the standard form it is possible to assume, without loss of generality, that the objective function f is a linear function.This is because any program with a general objective can be transformed into a program with a linear objective by adding a single variable t and a single constraint, as follows: [9]: 1.4

  9. Linear-fractional programming - Wikipedia

    en.wikipedia.org/wiki/Linear-fractional_programming

    Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear-fractional program in which the denominator is the constant function 1.