Ad
related to: cooling tower delta t calculation
Search results
Results From The WOW.Com Content Network
The first of the cooling load factors used in this method is the CLTD, or the Cooling Load Temperature Difference. This factor is used to represent the temperature difference between indoor and outdoor air with the inclusion of the heating effects of solar radiation. [1] [5] The second factor is the CLF, or the cooling load factor.
Adiabatic cooling towers spray water into the incoming air or onto a cardboard pad to cool the air before it passes over an air-cooled heat exchanger. Adiabatic cooling towers use less water than other cooling towers but do not cool the fluid as close to the wet bulb temperature. Most adiabatic cooling towers are also hybrid cooling towers.
The above equation only takes into account the temperature differences and ignores two important parameters, being 1) solar radiative flux; and 2) infrared exchanges from the sky. The concept of T sol-air was thus introduced to enable these parameters to be included within an improved calculation. The following formula results:
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
where ΔT A is the temperature difference between the two streams at end A, and ΔT B is the temperature difference between the two streams at end B. When the two temperature differences are equal, this formula does not directly resolve, so the LMTD is conventionally taken to equal its limit value, which is in this case trivially equal to the ...
Chillers are of two types; air-cooled or water-cooled. Air-cooled chillers are usually outside and consist of condenser coils cooled by fan-driven air. Water-cooled chillers are usually inside a building, and heat from these chillers is carried by recirculating water to a heat sink such as an outdoor cooling tower. coil
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral analysis of the boundary layer and analogies between energy and momentum transfer, these analytic approaches may not offer practical solutions to all problems when there are no mathematical models applicable.