When.com Web Search

  1. Ads

    related to: laplace transform problems with solutions pdf worksheet download free word

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  3. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  4. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    In the case of a boundary put at infinity with the boundary condition setting the solution to zero at infinity, then one has an infinite-extent Green's function. For the three-variable Laplace operator, one can for instance expand it in the rotationally invariant coordinate systems which allow separation of variables.

  5. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  6. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The two-dimensional analogue of the vibrating string is the vibrating membrane, with the edges clamped to be motionless. The Helmholtz equation was solved for many basic shapes in the 19th century: the rectangular membrane by Siméon Denis Poisson in 1829, the equilateral triangle by Gabriel Lamé in 1852, and the circular membrane by Alfred Clebsch in 1862.

  7. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  8. Integral transform - Wikipedia

    en.wikipedia.org/wiki/Integral_transform

    As an example of an application of integral transforms, consider the Laplace transform. This is a technique that maps differential or integro-differential equations in the "time" domain into polynomial equations in what is termed the "complex frequency" domain. (Complex frequency is similar to actual, physical frequency but rather more general.

  9. Laplace–Carson transform - Wikipedia

    en.wikipedia.org/wiki/Laplace–Carson_transform

    Let (,) be a function and a complex variable. The Laplace–Carson transform is defined as: [1] (,) = (,)The inverse Laplace–Carson transform is: (,) = + (,)where is a real-valued constant, refers to the imaginary axis, which indicates the integral is carried out along a straight line parallel to the imaginary axis lying to the right of all the singularities of the following expression: