Search results
Results From The WOW.Com Content Network
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.
Let X be a vector field on M of class C r−1 and let p ∈ M. An integral curve for X passing through p at time t 0 is a curve α : J → M of class C r−1, defined on an open interval J of the real line R containing t 0, such that =;
Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy. The solution curves are y = C e x 2 / 2 {\displaystyle y=Ce^{x^{2}/2}} . Given a family of curves , assumed to be differentiable , an isocline for that family is formed by the set of points at which some member of the family attains a given slope .
The line segment ¯ has length and sum of the lengths of ¯ and ¯ equals the length of ¯, which is 1. Therefore, cos 2 θ + 2 sin 2 θ = 1 {\displaystyle \cos 2\theta +2\sin ^{2}\theta =1} .
For instance, if f(x, y) = x 2 + y 2 − 1, then the circle is the set of all pairs (x, y) such that f(x, y) = 0. This set is called the zero set of f, and is not the same as the graph of f, which is a paraboloid. The implicit function theorem converts relations such as f(x, y) = 0 into functions.
When the variable is time, they are also called time-invariant systems. Many laws in physics , where the independent variable is usually assumed to be time , are expressed as autonomous systems because it is assumed the laws of nature which hold now are identical to those for any point in the past or future.
Recall that the slope is defined as the change in divided by the change in , or . The next step is to multiply the above value by the step size h {\displaystyle h} , which we take equal to one here:
Given the curve y 2 = x 3 + bx + c over the field K (whose characteristic we assume to be neither 2 nor 3), and points P = (x P, y P) and Q = (x Q, y Q) on the curve, assume first that x P ≠ x Q (case 1). Let y = sx + d be the equation of the line that intersects P and Q, which has the following slope: =