Search results
Results From The WOW.Com Content Network
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2]
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
To insert a value x into a splay tree: Insert x as with a normal binary search tree. Perform a splay on x. As a result, the newly inserted node x becomes the root of the tree. Alternatively: Use the split operation to split the tree at the value of x to two sub-trees: S and T.
To search for a given key value, apply a standard binary search algorithm in a binary search tree, ignoring the priorities. To insert a new key x into the treap, generate a random priority y for x. Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist.
When inserting a node into an AVL tree, you initially follow the same process as inserting into a Binary Search Tree. If the tree is empty, then the node is inserted as the root of the tree. If the tree is not empty, then we go down the root, and recursively go down the tree searching for the location to insert the new node.
Inserting elements into a skip list. The elements used for a skip list can contain more than one pointer since they can participate in more than one list. Insertions and deletions are implemented much like the corresponding linked-list operations, except that "tall" elements must be inserted into or deleted from more than one linked list.