When.com Web Search

  1. Ads

    related to: how does dopamine control movement increase memory loss

Search results

  1. Results From The WOW.Com Content Network
  2. Dopaminergic pathways - Wikipedia

    en.wikipedia.org/wiki/Dopaminergic_pathways

    The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.

  3. Neurobiological effects of physical exercise - Wikipedia

    en.wikipedia.org/wiki/Neurobiological_effects_of...

    Neuroplasticity is the process by which neurons adapt to a disturbance over time, and most often occurs in response to repeated exposure to stimuli. [27] Aerobic exercise increases the production of neurotrophic factors [note 1] (e.g., BDNF, IGF-1, VEGF) which mediate improvements in cognitive functions and various forms of memory by promoting blood vessel formation in the brain, adult ...

  4. Mesolimbic pathway - Wikipedia

    en.wikipedia.org/wiki/Mesolimbic_pathway

    The mesolimbic pathway and its positioning in relation to the other dopaminergic pathways. The mesolimbic pathway is a collection of dopaminergic (i.e., dopamine-releasing) neurons that project from the ventral tegmental area (VTA) to the ventral striatum, which includes the nucleus accumbens (NAcc) and olfactory tubercle. [9]

  5. Nigrostriatal pathway - Wikipedia

    en.wikipedia.org/wiki/Nigrostriatal_pathway

    The substantia nigra is located in the ventral midbrain of each hemisphere. It has two distinct parts, the pars compacta (SNc) and the pars reticulata (SNr). The pars compacta contains dopaminergic neurons from the A9 cell group that forms the nigrostriatal pathway that, by supplying dopamine to the striatum, relays information to the basal ganglia.

  6. Dopamine - Wikipedia

    en.wikipedia.org/wiki/Dopamine

    The anticipation of most types of rewards increases the level of dopamine in the brain, [4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release. [5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones.

  7. Dementia with Lewy bodies - Wikipedia

    en.wikipedia.org/wiki/Dementia_with_Lewy_bodies

    Loss of acetylcholine-producing neurons is thought to account for degeneration in memory and learning, while the death of dopamine-producing neurons appears to be responsible for degeneration of behavior, cognition, mood, movement, motivation, and sleep. [2]

  8. Dopamine receptor - Wikipedia

    en.wikipedia.org/wiki/Dopamine_receptor

    Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. [2]

  9. Dopamine receptor D1 - Wikipedia

    en.wikipedia.org/wiki/Dopamine_receptor_D1

    D 1 receptors regulate the memory, learning, and the growth of neurons, also is used in the reward system and locomotor activity, mediating some behaviors and modulating dopamine receptor D 2-mediated events. [11] [8] They play a role in addiction by facilitating the gene expression changes that occur in the nucleus accumbens during addiction.