Search results
Results From The WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
List of free analog and digital electronic circuit simulators, available for Windows, macOS, Linux, and comparing against UC Berkeley SPICE. The following table is split into two groups based on whether it has a graphical visual interface or not.
The Oberth effect is used in a powered flyby or Oberth maneuver where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the gravity potential is low, and the speed is high) can give much more change in kinetic energy and final speed (i.e. higher specific energy) than the same impulse ...
In rockets for a given target orbit, a rocket's mass fraction is the portion of the rocket's pre-launch mass (fully fueled) that does not reach orbit.The propellant mass fraction is the ratio of just the propellant to the entire mass of the vehicle at takeoff (propellant plus dry mass).
In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives
Tsiolkovsky calculated, using the Tsiolkovsky equation, [16]: 1 that the horizontal speed required for a minimal orbit around the Earth is 8,000 m/s (5 miles per second) and that this could be achieved by means of a multistage rocket fueled by liquid oxygen and liquid hydrogen. In the article "Exploration of Outer Space by Means of Rocket ...
These maneuvers require changes in the craft's velocity, and the classical rocket equation is used to calculate the propellant requirements for a given delta-v. A delta- v budget will add up all the propellant requirements, or determine the total delta-v available from a given amount of propellant, for the mission.