Ad
related to: explain paging with neat diagram ppt pdf download notes free
Search results
Results From The WOW.Com Content Network
A simple anticipatory paging algorithm will bring in the next few consecutive pages even though they are not yet needed (a prediction using locality of reference); this is analogous to a prefetch input queue in a CPU. Swap prefetching will prefetch recently swapped-out pages if there are enough free pages for them. [8]
The (h,k)-paging problem is a generalization of the model of paging problem: Let h,k be positive integers such that . We measure the performance of an algorithm with cache of size h ≤ k {\displaystyle h\leq k} relative to the theoretically optimal page replacement algorithm .
In computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only when an attempt is made to access it and that page is not already in memory (i.e., if a page fault occurs).
A page, memory page, or virtual page is a fixed-length contiguous block of virtual memory, described by a single entry in a page table.It is the smallest unit of data for memory management in an operating system that uses virtual memory.
In virtual memory systems, thrashing may be caused by programs or workloads that present insufficient locality of reference: if the working set of a program or a workload cannot be effectively held within physical memory, then constant data swapping, i.e., thrashing, may occur.
In the diagram above, some pages are not in physical memory. A page table is a data structure used by a virtual memory system in a computer to store mappings between virtual addresses and physical addresses .
In a system using segmentation, computer memory addresses consist of a segment id and an offset within the segment. [3] A hardware memory management unit (MMU) is responsible for translating the segment and offset into a physical address, and for performing checks to make sure the translation can be done and that the reference to that segment and offset is permitted.
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
Ad
related to: explain paging with neat diagram ppt pdf download notes free