Search results
Results From The WOW.Com Content Network
The star's luminosity can be estimated by comparison of the spectrum of a nearby star. The distance is then determined via the following inverse square law: = where is the apparent brightness and is the luminosity. Using the Sun as a reference we can write
In contrast, the term brightness in astronomy is generally used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, and also on any absorption of light along the path from object to ...
The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...
In astronomy, a phase curve describes the brightness of a reflecting body as a function of its phase angle (the arc subtended by the observer and the Sun as measured at the body). The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun.
Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]
Therefore, the stellar luminosity function is used to derive a mass function (a present-day mass function, PDMF) by applying mass–luminosity relation. [2] The luminosity function requires accurate determination of distances, and the most straightforward way is by measuring stellar parallax within 20 parsecs from the earth.
The relationship is represented by the equation: = where L ⊙ and M ⊙ are the luminosity and mass of the Sun and 1 < a < 6. [2] The value a = 3.5 is commonly used for main-sequence stars. [ 3 ] This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2 M ⊙ < M < 55 M ⊙ and does not apply to red giants ...
The luminosity thus obtained is known as the bolometric luminosity. Masses are often calculated from the dynamics of the virialized system or from gravitational lensing . Typical mass-to-light ratios for galaxies range from 2 to 10 ϒ ☉ while on the largest scales, the mass to light ratio of the observable universe is approximately 100 ϒ ...