Search results
Results From The WOW.Com Content Network
In the body, PFCs bind to proteins such as serum albumin. Their tissue distribution in humans is unknown, but studies in rats suggest it is present mostly in the liver, kidney, and blood. They are not metabolized by the body but are excreted by the kidneys. Dwell time in the body varies greatly by species.
The fluorine–fluorine bond of the difluorine molecule is relatively weak when compared to the bonds of heavier dihalogen molecules. The bond energy is significantly weaker than those of Cl 2 or Br 2 molecules and similar to the easily cleaved oxygen–oxygen bonds of peroxides or nitrogen–nitrogen bonds of hydrazines. [8]
Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen [note 1] and exists at standard conditions as pale yellow diatomic gas. Fluorine is extremely reactive as it reacts with all other elements except for the light inert gases. It is highly toxic.
Fluorine, in the form of fluoride, is considered to be a micronutrient for human health, necessary to prevent dental cavities, and to promote healthy bone growth. [28] The tea plant (Camellia sinensis L.) is a known accumulator of fluorine compounds, released upon forming infusions such as the common beverage. The fluorine compounds decompose ...
Pie charts of typical human body composition by percent of mass, and by percent of atomic composition (atomic percent) Body composition may be analyzed in various ways. This can be done in terms of the chemical elements present, or by molecular structure e.g., water , protein , fats (or lipids ), hydroxyapatite (in bones), carbohydrates (such ...
Perfluoroalkanes are very stable because of the strength of the carbon–fluorine bond, one of the strongest in organic chemistry. [4] Its strength is a result of the electronegativity of fluorine imparting partial ionic character through partial charges on the carbon and fluorine atoms, which shorten and strengthen the bond (compared to carbon-hydrogen bonds) through favorable covalent ...
A few elements have been found to have a pharmacologic function in humans (and possibly in other living things as well; the phenomenon has not been widely studied). In these, a normally nonessential element can treat a disease (often a micronutrient deficiency). An example is fluorine, which reduces the effects of iron deficiency in rats.
Introducing the carbon–fluorine bond to organic compounds is the major challenge for medicinal chemists using organofluorine chemistry, as the carbon–fluorine bond increases the probability of having a successful drug by about a factor of ten. [30]