When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.

  3. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Eisenstein further developed these notions, including the remark that, in modern parlance, matrix products are non-commutative. Cauchy was the first to prove general statements about determinants, using as the definition of the determinant of a matrix A = [a i, j] the following: replace the powers a k j by a jk in the polynomial

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The Jacobian matrix represents the differential of f at every point where f is differentiable. In detail, if h is a displacement vector represented by a column matrix, the matrix product J(x) ⋅ h is another displacement vector, that is the best linear approximation of the change of f in a neighborhood of x, if f(x) is differentiable at x.

  7. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    If A is an m × n matrix and A T is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A A T is m × m and A T A is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A A T has entries that are the inner product of a row of A with a column of A T.

  8. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, ⁡ = ⁡ for matrices A, B, and C of dimensions k×l, l×m, and m×n.