When.com Web Search

  1. Ad

    related to: application of nmr and mri technology in research pdf book

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Magnetic_resonance_imaging

    MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy. [1]

  3. In vivo magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/In_vivo_magnetic_resonance...

    In vivo magnetic resonance spectroscopy (MRS) is a specialized technique associated with magnetic resonance imaging (MRI). [1] [2]Magnetic resonance spectroscopy (MRS), also known as nuclear magnetic resonance (NMR) spectroscopy, is a non-invasive, ionizing-radiation-free analytical technique that has been used to study metabolic changes in brain tumors, strokes, seizure disorders, Alzheimer's ...

  4. Physics of magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Physics_of_magnetic...

    Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  6. History of magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/History_of_magnetic...

    MRI Scanner Mark One. The first MRI scanner to be built and used, in Aberdeen Royal Infirmary in Scotland. The history of magnetic resonance imaging (MRI) includes the work of many researchers who contributed to the discovery of nuclear magnetic resonance (NMR) and described the underlying physics of magnetic resonance imaging, starting early in the twentieth century.

  7. Nuclear magnetic resonance spectroscopy of proteins - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    NMR spectroscopy is nucleus specific. Thus, it can distinguish between hydrogen and deuterium. The amide protons in the protein exchange readily with the solvent, and, if the solvent contains a different isotope, typically deuterium, the reaction can be monitored by NMR spectroscopy. How rapidly a given amide exchanges reflects its solvent ...

  8. Technological applications of superconductivity - Wikipedia

    en.wikipedia.org/wiki/Technological_applications...

    The biggest application for superconductivity is in producing the large-volume, stable, and high-intensity magnetic fields required for magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). This represents a multi-billion-US$ market for companies such as Oxford Instruments and Siemens.

  9. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    While 1D NMR is more straightforward and ideal for identifying basic structural features, COSY enhances the capabilities of NMR by providing deeper insights into molecular connectivity. The two-dimensional spectrum that results from the COSY experiment shows the frequencies for a single isotope, most commonly hydrogen (1 H) along both axes.