Search results
Results From The WOW.Com Content Network
This decimal format can also represent any binary fraction a/2 m, such as 1/8 (0.125) or 17/32 (0.53125). More generally, a rational number a/b, with a and b relatively prime and b positive, can be exactly represented in binary fixed point only if b is a power of 2; and in decimal fixed point only if b has no prime factors other than 2 and/or 5.
Similarly, if the final digit on the right of the decimal mark is zero—that is, if b n = 0 —it may be removed; conversely, trailing zeros may be added after the decimal mark without changing the represented number; [note 1] for example, 15 = 15.0 = 15.00 and 5.2 = 5.20 = 5.200. For representing a negative number, a minus sign is placed ...
The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be represented exactly using a decimal base (0.2, or 2 × 10 −1).
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
Decimalisation or decimalization (see spelling differences) is the conversion of a system of currency or of weights and measures to units related by powers of 10.. Most countries have decimalised their currencies, converting them from non-decimal sub-units to a decimal system, with one basic currency unit and sub-units that are valued relative to the basic unit by a power of 10, most commonly ...
For example, the base-8 numeral 23 8 contains two digits, "2" and "3", and with a base number (subscripted) "8". When converted to base-10, the 23 8 is equivalent to 19 10 , i.e. 23 8 = 19 10 . In our notation here, the subscript " 8 " of the numeral 23 8 is part of the numeral, but this may not always be the case.
Unless specified by context, numbers without subscript are considered to be decimal. By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form:
Subdivisions of an inch are typically written using dyadic fractions with odd number numerators; for example, two and three-eighths of an inch would be written as 2 + 3 / 8 ″ and not as 2.375″ nor as 2 + 6 / 16 ″. However, for engineering purposes fractions are commonly given to three or four places of decimals and have been ...