Search results
Results From The WOW.Com Content Network
In statistics, gambler's ruin is the fact that a gambler playing a game with negative expected value will eventually go bankrupt, regardless of their betting system.. The concept was initially stated: A persistent gambler who raises his bet to a fixed fraction of the gambler's bankroll after a win, but does not reduce it after a loss, will eventually and inevitably go broke, even if each bet ...
Then the gambler's fortune over time is a martingale, and the time τ at which he decides to quit (or goes broke and is forced to quit) is a stopping time. So the theorem says that E[X τ] = E[X 0]. In other words, the gambler leaves with the same amount of money on average as when he started. (The same result holds if the gambler, instead of ...
Suppose X n is the gambler's fortune after n tosses of a fair coin, such that the gambler wins $1 if the coin toss outcome is heads and loses $1 if the coin toss outcome is tails. The gambler's conditional expected fortune after the next game, given the history, is equal to his present fortune. This sequence is thus a martingale.
A common example of a first-hitting-time model is a ruin problem, such as Gambler's ruin. In this example, an entity (often described as a gambler or an insurance company) has an amount of money which varies randomly with time, possibly with some drift. The model considers the event that the amount of money reaches 0, representing bankruptcy.
This result has many names: the level-crossing phenomenon, recurrence or the gambler's ruin. The reason for the last name is as follows: a gambler with a finite amount of money will eventually lose when playing a fair game against a bank with an infinite amount of money. The gambler's money will perform a random walk, and it will reach zero at ...
Risk of ruin is a concept in gambling, insurance, and finance relating to the likelihood of losing all one's investment capital or extinguishing one's bankroll below the minimum for further play. [1] For instance, if someone bets all their money on a simple coin toss, the risk of ruin is 50%.
If your partner is the one getting you off, they can ruin your orgasm by stopping stimulation, slowing down, or changing the type of stimulation they’re providing when you’re almost over the edge.
Then X is really the stopped process Y T, since the gambler's account remains in the same state after leaving the game as it was in at the moment that the gambler left the game. Stopping at a random time: suppose that the gambler has no other sources of revenue, and that the casino will not extend its customers credit. The gambler resolves to ...