Search results
Results From The WOW.Com Content Network
The modern commercial production of potassium carbonate is by reaction of potassium hydroxide with carbon dioxide: [3] 2 KOH + CO 2 → K 2 CO 3 + H 2 O. From the solution crystallizes the sesquihydrate K 2 CO 3 ·1.5H 2 O ("potash hydrate"). Heating this solid above 200 °C (392 °F) gives the anhydrous salt.
It is manufactured by treating an aqueous solution of potassium carbonate or potassium hydroxide with carbon dioxide: [1] K 2 CO 3 + CO 2 + H 2 O → 2 KHCO 3. Decomposition of the bicarbonate occurs between 100 and 120 °C (212 and 248 °F): 2 KHCO 3 → K 2 CO 3 + CO 2 + H 2 O. This reaction is employed to prepare high purity potassium carbonate.
Potassium hypochlorite is produced by the disproportionation reaction of chlorine with a solution of potassium hydroxide: [2] Cl 2 + 2 KOH → KCl + KOCl + H 2 O. This is the traditional method, first used by Claude Louis Berthollet in 1789. [3] Another production method is electrolysis of potassium chloride solution.
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
The solution so produced is sufficiently reactive that it spontaneously ignites if combustible material (sugar, paper, etc.) is present. Candy being dropped into molten salt In schools, molten potassium chlorate is used in screaming jelly babies , Gummy bear , Haribo , and Trolli candy demonstration where the candy is dropped into the molten salt.
Under pure thermodynamic reaction control, when the equilibrium has been reached, the product distribution will be a function of the stabilities G°. After an infinite amount of reaction time, the ratio of product concentrations will equal the equilibrium constant K eq and therefore be a function of the difference in Gibbs free energies,
In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture.In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. [1]
Where HV is the hydroxyl value; V B is the amount (ml) potassium hydroxide solution required for the titration of the blank; V acet is the amount (ml) of potassium hydroxide solution required for the titration of the acetylated sample; W acet is the weight of the sample (in grams) used for acetylation; N is the normality of the titrant; 56.1 is ...