Search results
Results From The WOW.Com Content Network
Several ways of categorizing multiple-access schemes and protocols have been used in the literature. For example, Daniel Minoli (2009) [2] identifies five principal types of multiple-access schemes: FDMA, TDMA, CDMA, SDMA, and random access.
Random access (also called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any other, no matter how many elements may be in the set. In computer science it is typically contrasted to sequential access which ...
Source: [1] Node D is unaware of the ongoing data transfer between node A and node B. Node D has data to send to node C, which is in the transmission range of node B. D initiates the process by sending an RTS frame to node C. Node C has already deferred its transmission until the completion of the current data transfer between node A and node B (to avoid co-channel interference at node B).
Multiple layers SNA Protocol Suite: SNAP: SubNet Access Protocol Link layer IEEE 802 Overview and Architecture: SNMP: Simple Network Management Protocol Application layer RFC 1155, RFC 3410 thru RFC 3418 and others SOF: Start of frame Link layer IEEE 802.3 (Ethernet), or RFC 2687 (HDLC), for examples SRAM: Static random access memory Hardware
A DBMS also offers a flexible query processing so that the information needed can be expressed using queries. However, in contrast to a DBMS, a DSMS executes a continuous query that is not only performed once, but is permanently installed. Therefore, the query is continuously executed until it is explicitly uninstalled.
ALOHA and the other random-access protocols have an inherent variability in their throughput and delay performance characteristics. For this reason, applications that need highly deterministic load behavior may use master/slave or token-passing schemes (such as Token Ring or ARCNET) instead of contention systems.
Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. [1] The users transmit in rapid succession, one after the other, each using its own time slot.
Thus concurrency control is an essential element for correctness in any system where two database transactions or more, executed with time overlap, can access the same data, e.g., virtually in any general-purpose database system. Consequently, a vast body of related research has been accumulated since database systems emerged in the early 1970s.