Ad
related to: nonparametric statistics chi-square formula
Search results
Results From The WOW.Com Content Network
Chi-squared distribution, showing χ2 on the x -axis and p -value (right tail probability) on the y -axis. A chi-squared test (also chi-square or χ2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical ...
The chi-squared distribution is obtained as the sum of the squares of k independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below.
Friedman test. The Friedman test is a non-parametric statistical test developed by Milton Friedman. [1][2][3] Similar to the parametric repeated measures ANOVA, it is used to detect differences in treatments across multiple test attempts. The procedure involves ranking each row (or block) together, then considering the values of ranks by columns.
The Pearson's chi-squared test statistic is defined as . The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.
The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1][2][3] It is used for comparing two or more independent samples of equal or different sample sizes.
Using the poisson-weighted mixture representation for , and the fact that the sum of chi-squared random variables is also a chi-square, completes the result. The indices in the series are (1 + 2 i ) + ( k − 1) = k + 2 i as required.
Reduced chi-squared statistic. In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2][3] Its square root is called regression standard error, [4 ...
The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is