When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    In mathematics, a Gaussian function, ... The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c ...

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...

  4. Exponentially modified Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentially_modified...

    In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y , where X and Y are independent, X is Gaussian with mean μ and variance σ 2 , and Y is ...

  5. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .

  6. Voigt profile - Wikipedia

    en.wikipedia.org/wiki/Voigt_profile

    The pseudo-Voigt profile (or pseudo-Voigt function) is an approximation of the Voigt profile V(x) using a linear combination of a Gaussian curve G(x) and a Lorentzian curve L(x) instead of their convolution. The pseudo-Voigt function is often used for calculations of experimental spectral line shapes.

  7. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Copula, for the definition of the Gaussian or normal copula model. Multivariate t-distribution, which is another widely used spherically symmetric multivariate distribution. Multivariate stable distribution extension of the multivariate normal distribution, when the index (exponent in the characteristic function) is between zero and two.

  8. Inverse Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse_Gaussian_distribution

    The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive drift takes to reach a ...

  9. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.