When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spectral radiance - Wikipedia

    en.wikipedia.org/wiki/Spectral_radiance

    The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr −1 ·m −2 ·Hz −1) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr −1 ·m −3)—commonly the watt per steradian per square metre per nanometre (W·sr −1 ·m −2 ·nm −1).

  3. Photometry (optics) - Wikipedia

    en.wikipedia.org/wiki/Photometry_(optics)

    Spectral radiance Specific intensity L e,Ω,ν [nb 6] watt per steradian per square metre per hertz W⋅sr −1 ⋅m −2 ⋅Hz −1: M⋅T −2: Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅m −2 ⋅nm −1. This is a directional quantity. This is sometimes also confusingly called ...

  4. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  5. Spectroradiometer - Wikipedia

    en.wikipedia.org/wiki/Spectroradiometer

    Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with ...

  6. Radiosity (radiometry) - Wikipedia

    en.wikipedia.org/wiki/Radiosity_(radiometry)

    Spectral radiance Specific intensity L e,Ω,ν [nb 3] watt per steradian per square metre per hertz W⋅sr −1 ⋅m −2 ⋅Hz −1: M⋅T −2: Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅m −2 ⋅nm −1. This is a directional quantity. This is sometimes also confusingly called ...

  7. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The integrals of spectral radiance (or specific intensity) with respect to solid angle, used above, are singular for exactly collimated beams, or may be viewed as Dirac delta functions. Therefore, the specific radiative intensity is unsuitable for the description of a collimated beam, while spectral flux density is suitable for that purpose. [ 18 ]

  8. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...

  9. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Radiance is the integral of the spectral radiance over all frequencies or wavelengths. For radiation emitted by the surface of an ideal black body at a given temperature, spectral radiance is governed by Planck's law, while the integral of its radiance, over the hemisphere into which its surface radiates, is given by the Stefan–Boltzmann law.