When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    Genetic programming often uses tree-based internal data structures to represent the computer programs for adaptation instead of the list structures typical of genetic algorithms. There are many variants of Genetic Programming, including Cartesian genetic programming , Gene expression programming , [ 62 ] grammatical evolution , Linear genetic ...

  3. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm (GA) for the generation of evolving artificial neural networks (a neuroevolution technique) developed by Kenneth Stanley and Risto Miikkulainen in 2002 while at The University of Texas at Austin. It alters both the weighting parameters and structures of networks, attempting ...

  4. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .

  5. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Evolutionary algorithm Aspects evolved Neuro-genetic evolution by E. Ronald, 1994 [12] Direct Genetic algorithm: Network Weights Cellular Encoding (CE) by F. Gruau, 1994 [8] Indirect, embryogenic (grammar tree using S-expressions) Genetic programming: Structure and parameters (simultaneous, complexification) GNARL by Angeline et al., 1994 [13 ...

  6. Evolutionary computation - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_computation

    John Henry Holland introduced genetic algorithms in the 1960s, and it was further developed at the University of Michigan in the 1970s. [5] While the other approaches were focused on solving problems, Holland primarily aimed to use genetic algorithms to study adaptation and determine how it may be simulated.

  7. Gene expression programming - Wikipedia

    en.wikipedia.org/wiki/Gene_expression_programming

    From genetic algorithms it inherited the linear chromosomes of fixed length; and from genetic programming it inherited the expressive parse trees of varied sizes and shapes. In gene expression programming the linear chromosomes work as the genotype and the parse trees as the phenotype, creating a genotype/phenotype system .

  8. Chromosome (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Chromosome_(evolutionary...

    Tree representations in a chromosome are used by genetic programming, an EA type for generating computer programs or circuits. [10] The trees correspond to the syntax trees generated by a compiler as internal representation when translating a computer program. The adjacent figure shows the syntax tree of a mathematical expression as an example.

  9. John Henry Holland - Wikipedia

    en.wikipedia.org/wiki/John_Henry_Holland

    John Henry Holland was born on February 2, 1929 in Fort Wayne, Indiana, the elder child of [3] son of Gustave A. Holland (b. July 24, 1896, Russian Poland) and Mildred P. Gfroerer (b.