When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    then resemblance to rows 1, 2, and 4 of the code generator matrix (G) below will also be evident. So, by picking the parity bit coverage correctly, all errors with a Hamming distance of 1 can be detected and corrected, which is the point of using a Hamming code.

  3. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  5. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  6. Cannon's algorithm - Wikipedia

    en.wikipedia.org/wiki/Cannon's_algorithm

    In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]

  7. Steane code - Wikipedia

    en.wikipedia.org/wiki/Steane_code

    It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for both qubit flip errors (X errors) and phase flip errors (Z errors). The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors. Its check matrix in standard form is

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    The most time-consuming operation of the algorithm is the multiplication of matrix by a vector, so it is effective for a very large sparse matrix with appropriate implementation. The speed of convergence is like ( λ 1 / λ 2 ) k {\displaystyle (\lambda _{1}/\lambda _{2})^{k}} (see a later section ).

  9. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.