Search results
Results From The WOW.Com Content Network
So ordinal numbers exist and are essentially unique. Ordinal numbers are distinct from cardinal numbers, which measure the size of sets. Although the distinction between ordinals and cardinals is not always apparent on finite sets (one can go from one to the other just by counting labels), they are very different in the infinite case, where ...
Every finite ordinal (natural number) is initial, but most infinite ordinals are not initial. The axiom of choice is equivalent to the statement that every set can be well-ordered, i.e. that every cardinal has an initial ordinal. In this case, it is traditional to identify the cardinal number with its initial ordinal, and we say that the ...
Von Neumann cardinal assignment implies that the cardinal number of a finite set is the common ordinal number of all possible well-orderings of that set, and cardinal and ordinal arithmetic (addition, multiplication, power, proper subtraction) then give the same answers for finite numbers. However, they differ for infinite numbers.
Ordinal indicator – Character(s) following an ordinal number (used when writing ordinal numbers, such as a super-script) Ordinal number – Generalization of "n-th" to infinite cases (the related, but more formal and abstract, usage in mathematics) Ordinal data, in statistics; Ordinal date – Date written as number of days since first day of ...
In linguistics, and more precisely in traditional grammar, a cardinal numeral (or cardinal number word) is a part of speech used to count. Examples in English are the words one , two , three , and the compounds three hundred [and] forty-two and nine hundred [and] sixty .
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .
The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...
Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").