When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.

  3. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length. The figure formed by joining the midpoints of the sides of a rhombus is a rectangle , and vice versa.

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Crossed rectangle: an antiparallelogram whose sides are two opposite sides and the two diagonals of a rectangle, hence having one pair of parallel opposite sides. Crossed square : a special case of a crossed rectangle where two of the sides intersect at right angles.

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Rectangle – A parallelogram with four angles of equal size (right angles). Rhombus – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics. [1]

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  7. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    For a cyclic orthodiagonal quadrilateral (one that can be inscribed in a circle), suppose the intersection of the diagonals divides one diagonal into segments of lengths p 1 and p 2 and divides the other diagonal into segments of lengths q 1 and q 2. Then [10] (the first equality is Proposition 11 in Archimedes' Book of Lemmas)

  8. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Any square, rectangle, isosceles trapezoid, or antiparallelogram is cyclic. A kite is cyclic if and only if it has two right angles – a right kite.A bicentric quadrilateral is a cyclic quadrilateral that is also tangential and an ex-bicentric quadrilateral is a cyclic quadrilateral that is also ex-tangential.

  9. Golden rhombus - Wikipedia

    en.wikipedia.org/wiki/Golden_rhombus

    The golden rhombus. In geometry, a golden rhombus is a rhombus whose diagonals are in the golden ratio: [1] = = + Equivalently, it is the Varignon parallelogram formed from the edge midpoints of a golden rectangle. [1]