Search results
Results From The WOW.Com Content Network
Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...
The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y ( x ) = 7 x 3 – 8 x 2 – 3 x + 3 , the 2-point Gaussian quadrature rule even returns an exact result.
[7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For solution of the multi-output prediction problem, Gaussian process regression for vector-valued function was ...
Visualisation of the Box–Muller transform — the coloured points in the unit square (u 1, u 2), drawn as circles, are mapped to a 2D Gaussian (z 0, z 1), drawn as crosses. The plots at the margins are the probability distribution functions of z0 and z1. z0 and z1 are unbounded; they appear to be in [−2.5, 2.5] due to the choice of the ...
In mathematics, the Gauss map (also known as Gaussian map [1] or mouse map), is a nonlinear iterated map of the reals into a real interval given by the Gaussian function: x n + 1 = exp ( − α x n 2 ) + β , {\displaystyle x_{n+1}=\exp(-\alpha x_{n}^{2})+\beta ,\,}
In statistics, a Gaussian random field (GRF) is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process . An important special case of a GRF is the Gaussian free field .
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters −λ/(2μ 2) and −λ/2, and natural statistics X and 1/X. For λ > 0 {\displaystyle \lambda >0} fixed, it is also a single-parameter natural exponential family distribution [ 2 ] where the base distribution has density