When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC. [14] As of 1997, it remained unknown whether a depth-first traversal could be constructed by a deterministic parallel algorithm, in the complexity class NC. [15]

  3. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    Natural language processing: Parse trees; Modeling utterances in a generative grammar; Dialogue tree for generating conversations; Document Object Models ("DOM tree") of XML and HTML documents; Search trees store data in a way that makes an efficient search algorithm possible via tree traversal. A binary search tree is a type of binary tree

  5. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [12] [13] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.

  6. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Backtracking is the process of traversing the tree in preorder, depth first. Any systematic rule for choosing column c in this procedure will find all solutions, but some rules work much better than others. To reduce the number of iterations, Knuth suggests that the column-choosing algorithm select a column with the smallest number of 1s in it.

  7. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  8. GraphBLAS - Wikipedia

    en.wikipedia.org/wiki/GraphBLAS

    The following is a GraphBLAS 2.1-compliant example of a breadth-first search in the C programming language. [ 16 ] : 294 #include <stdlib.h> #include <stdio.h> #include <stdint.h> #include <stdbool.h> #include "GraphBLAS.h" /* * Given a boolean n x n adjacency matrix A and a source vertex s, performs a BFS traversal * of the graph and sets v[i ...

  9. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.