Search results
Results From The WOW.Com Content Network
The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers. Stein's algorithm uses simpler arithmetic operations than the conventional Euclidean algorithm ; it replaces division with arithmetic shifts ...
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that
Lehmer's GCD algorithm, named after Derrick Henry Lehmer, is a fast GCD algorithm, an improvement on the simpler but slower Euclidean algorithm. It is mainly used for big integers that have a representation as a string of digits relative to some chosen numeral system base , say β = 1000 or β = 2 32 .
A simple and sufficient test for the absence of a dependence is the greatest common divisor (GCD) test. It is based on the observation that if a loop carried dependency exists between X[a*i + b] and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable), then GCD (c, a) must divide (d – b).
The inverse of a non zero element a of L is the coefficient u in Bézout's identity au + fv = 1, which may be computed by extended GCD algorithm. (the GCD is 1 because the minimal polynomial f is irreducible). The degrees inequality in the specification of extended GCD algorithm shows that a further division by f is not needed to get deg(u ...
Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.