Search results
Results From The WOW.Com Content Network
The Wharton olefin synthesis or the Wharton reaction is a chemical reaction that involves the reduction of α,β-epoxy ketones using hydrazine to give allylic alcohols. [ 1 ] [ 2 ] [ 3 ] This reaction, introduced in 1961 by P. S. Wharton, is an extension of the Wolff–Kishner reduction .
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
When derived from hydrazine itself, hydrazones condense with a second equivalent of a carbonyl to give azines: [11] R 2 C=N−NH 2 + R 2 C=O → R 2 C=N−N=CR 2 + H 2 O. Hydrazones are intermediates in the Wolff–Kishner reduction. Hydrazones are reactants in hydrazone iodination, the Shapiro reaction, and the Bamford–Stevens reaction to ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Hydrazine is an inorganic compound with the chemical formula N 2 H 4.It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour.Hydrazine is highly hazardous unless handled in solution as, for example, hydrazine hydrate (N 2 H 4 ·xH 2 O).
It condenses with ketones and aldehydes to form hydrazones, which can be further transformed into reactive intermediates such as diazo compounds or carbenes. N-heterocycles can be synthesized through 1,3-dipolar cycloaddition reactions. Ketone hydrazones are defunctionalized using mild reagents in a modified Wolff-Kishner reaction. [4]
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...