Search results
Results From The WOW.Com Content Network
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
Relative permittivity = electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum) Specific gravity: SG (same as Relative density) Stefan number: Ste = Josef Stefan
In electromagnetism, the Clausius–Mossotti relation, named for O. F. Mossotti and Rudolf Clausius, expresses the dielectric constant (relative permittivity, ε r) of a material in terms of the atomic polarizability, α, of the material's constituent atoms and/or molecules, or a homogeneous mixture thereof.
In electricity (electromagnetism), the electric susceptibility (; Latin: susceptibilis "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in ...
Materials or systems exhibiting multiple phases (such as composites or heterogeneous materials) commonly show a universal dielectric response, whereby dielectric spectroscopy reveals a power law relationship between the impedance (or the inverse term, admittance) and the frequency, ω, of the applied AC field.
Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]
The imaginary part of the (frequency-dependent) relative permittivity is a measure for the ability of a dielectric material to convert electromagnetic field energy into heat, also called dielectric loss. (The real part of the permittivity is the normal effect of capacitance and results in non-dissipative reactive power.)