Search results
Results From The WOW.Com Content Network
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
In electromagnetism, the Clausius–Mossotti relation, named for O. F. Mossotti and Rudolf Clausius, expresses the dielectric constant (relative permittivity, ε r) of a material in terms of the atomic polarizability, α, of the material's constituent atoms and/or molecules, or a homogeneous mixture thereof.
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
The real (blue solid line) and imaginary (orange dashed line) components of relative permittivity are plotted for model with parameters = 3.2 eV, = 4.5 eV, = 100 eV, = 1 eV, and = 3.5. The Tauc–Lorentz model is a mathematical formula for the frequency dependence of the complex-valued relative permittivity , sometimes referred to as the ...
Dielectric films tend to exhibit greater dielectric strength than thicker samples of the same material. For instance, the dielectric strength of silicon dioxide films of thickness around 1 μm is about 0.5 GV/m. [3] However very thin layers (below, say, 100 nm) become partially conductive because of electron tunneling.
The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies. [1] Dielectric spectroscopy (which falls in a subcategory of the impedance spectroscopy) measures the dielectric properties of a medium as a function of frequency.
In electricity (electromagnetism), the electric susceptibility (; Latin: susceptibilis "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in ...
where the permittivity = is the product of: ε 0, the permittivity of free space, or the electric constant; and; ε r, the relative permittivity of the dielectric. In the equation above, the use of ε accounts for the polarization (if any) of the dielectric material.