When.com Web Search

  1. Ad

    related to: how to find midpoint sum calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The midpoint method computes + so that the red chord is approximately parallel to the tangent line at the midpoint (the green line). In numerical analysis , a branch of applied mathematics , the midpoint method is a one-step method for numerically solving the differential equation ,

  3. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution. Because the region by the small shapes is usually not exactly the same shape as the region being measured, the Riemann sum will differ from the area being measured.

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    For this purpose it is possible to use the following fact: if we draw the circle with the sum of a and b as the diameter, then the height BH (from a point of their connection to crossing with a circle) equals their geometric mean. The similar geometrical construction solves a problem of a quadrature for a parallelogram and a triangle.

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).

  6. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.

  7. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/.../Fundamental_theorem_of_calculus

    The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be ...

  8. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Averaging of Simpson's 1/3 rule composite sums with properly shifted frames produces the following rules: [() + + + = + + (+)], where two points outside of the integrated region are exploited, and [() + + + = + + + ()], where only points within integration region are used. Application of the second rule to the region of 3 points generates 1/3 ...

  9. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is also used to find approximate solutions to equations; in practice, it is the standard way to solve differential equations and do root finding in most applications. Examples are methods such as Newton's method , fixed point iteration , and linear approximation .