When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    Fermat knew that a fourth power cannot be the sum of two other fourth powers (the n = 4 case of Fermat's Last Theorem; see Fermat's right triangle theorem). Euler conjectured that a fourth power cannot be written as the sum of three fourth powers, but 200 years later, in 1986, this was disproven by Elkies with: 20615673 4 = 18796760 4 ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠ .

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.

  6. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    Numbers of the form 31·16 n always require 16 fourth powers. 68 578 904 422 is the last known number that requires 9 fifth powers (Integer sequence S001057, Tony D. Noe, Jul 04 2017), 617 597 724 is the last number less than 1.3 × 10 9 that requires 10 fifth powers, and 51 033 617 is the last number less than 1.3 × 10 9 that requires 11.

  7. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    In the second step, they were divided by 3. The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets

  8. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits. The only powers of 2 with all digits distinct are 2 0 = 1 to 2 15 = 32 768 , 2 20 = 1 048 576 and 2 29 = 536 870 912 .

  9. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x: