Search results
Results From The WOW.Com Content Network
"subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence.
Second edition of the book. Neil Sloane started collecting integer sequences as a graduate student in 1964 to support his work in combinatorics. [8] [9] The database was at first stored on punched cards.
The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...
These sequences of natural numbers can again be represented by single natural numbers, facilitating their manipulation in formal theories of arithmetic. Since the publishing of Gödel's paper in 1931, the term "Gödel numbering" or "Gödel code" has been used to refer to more general assignments of natural numbers to mathematical objects.
For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...