Search results
Results From The WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
Animated examples of the CLT; General Dynamic SOCR CLT Activity; Interactive Simulation of the Central Limit Theorem for Windows; The SOCR CLT activity provides hands-on demonstration of the theory and applications of this limit theorem. A music video demonstrating the central limit theorem with a Galton board by Carl McTague
Then according to the central limit theorem, the distribution of Z n approaches the normal N(0, 1 / 3 ) distribution. This convergence is shown in the picture: as n grows larger, the shape of the probability density function gets closer and closer to the Gaussian curve.
For some classes of random variables, the classic central limit theorem works rather fast, as illustrated in the Berry–Esseen theorem. For example, the distributions with finite first, second, and third moment from the exponential family; on the other hand, for some random variables of the heavy tail and fat tail variety, it works very slowly ...
Cayley's theorem (group theory) Central limit theorem (probability) Cesàro's theorem (real analysis) Ceva's theorem ; Chasles' theorem, Chasles' theorem ; Chasles' theorem (algebraic geometry) Chebotarev's density theorem (number theory) Chen's theorem (number theory) Cheng's eigenvalue comparison theorem (Riemannian geometry)
The central limit theorem can provide more detailed information about the behavior of than the law of large numbers. For example, we can approximately find a tail probability of M N {\displaystyle M_{N}} – the probability that M N {\displaystyle M_{N}} is greater than some value x {\displaystyle x} – for a fixed value of N {\displaystyle N} .