Search results
Results From The WOW.Com Content Network
A stronger mathematical definition is to use vector algebra, since a quantity with magnitude and direction, like the dipole moment of two point charges, can be expressed in vector form = where d is the displacement vector pointing from the negative charge to the positive charge.
When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model, such a dipole is predicted to be non-zero but very small, at most 10 −38 e⋅cm, [2] where e stands for the elementary charge.
In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [1] It is represented by a pseudovector M.
In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field.
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...