Ads
related to: calculate each quotient of two factors worksheet examples printable
Search results
Results From The WOW.Com Content Network
In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.
To calculate the whole number quotient of dividing a large number by a small number, the student repeatedly takes away "chunks" of the large number, where each "chunk" is an easy multiple (for example 100×, 10×, 5× 2×, etc.) of the small number, until the large number has been reduced to zero – or the remainder is less than the small ...
Given two integers a and b, with b ≠ 0, there exist unique integers q and r such that a = bq + r. and 0 ≤ r < |b|, where |b| denotes the absolute value of b. [4] In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder.
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.
It is called Euclidean division, and possesses the following important property: given two integers a and b with b ≠ 0, there exist unique integers q and r such that a = q × b + r and 0 ≤ r < |b|, where |b| denotes the absolute value of b. The integer q is called the quotient and r is called the remainder of the division of a by b.
Given an integer n (n refers to "the integer to be factored"), the trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on.