Search results
Results From The WOW.Com Content Network
Circular polarization is a limiting case of elliptical polarization. The other special case is the easier-to-understand linear polarization . All three terms were coined by Augustin-Jean Fresnel , in a memoir read to the French Academy of Sciences on 9 December 1822.
In optics, polarized light can be described using the Jones calculus, [1] invented by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices.
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave.An individual photon can be described as having right or left circular polarization, or a superposition of the two.
Circular polarization can be created by sending linearly polarized light through a quarter-wave plate oriented at 45° to the linear polarization to create two components of the same amplitude with the required phase shift. The superposition of the original and phase-shifted components causes a rotating electric field vector, which is depicted ...
Four weeks before he presented his completed theory of total internal reflection and the rhomb, Fresnel submitted a memoir [30] in which he introduced the needed terms linear polarization, circular polarization, and elliptical polarization, [31] and in which he explained optical rotation as a species of birefringence: linearly-polarized light ...
The Stokes I, Q, U and V parameters. The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation.They were defined by George Gabriel Stokes in 1851, [1] [2] as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of ...
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.
The calculation is performed with all conditions of rectilinear or circular polarization. In the same way, it calculates the structure factors and intensities of anomalous or resonant diffraction spectra (DAFS or RXS). The code uses two techniques of monoelectronic calculations.