Search results
Results From The WOW.Com Content Network
In a normal circulatory system, the volume of blood returning to the heart each minute is approximately equal to the volume that is pumped out each minute (the cardiac output). [12] Because of this, the velocity of blood flow across each level of the circulatory system is primarily determined by the total cross-sectional area of that level.
Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues. It is composed of a fluid plasma in which hemolymph cells called hemocytes are suspended. In addition to hemocytes, the plasma also contains ...
A Newtonian Fluid is a fluid whose viscous shear stresses (acting between different layers of fluid and between the fluid layer and surface over which it is flowing) are directly proportional to the rate of change of velocity of the flow of the fluid with respect to the distance in the transverse direction (distance measured perpendicular to ...
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [1] [2] It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels (from Greek kardia meaning heart, and Latin vascula meaning vessels).
Any object, totally or partially immersed in a fluid or liquid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes' principle allows the buoyancy of any floating object partially or fully immersed in a fluid to be calculated. The downward force on the object is simply its weight.
Any body wholly or partially immersed in a fluid experiences an upward force equal to the weight of the fluid displaced. In addition to the principle that bears his name, Archimedes discovered that a submerged object displaces a volume of water equal to the object's own volume (upon which the story of him shouting "Eureka" is based). This ...
Then, because of its large number (10-14 million capillaries), there is an incredible amount of surface area for exchange. However, this only has 5% of the total blood volume (250 ml 5000 ml). Finally, blood flows more slowly in the capillaries, given the extensive branching. [4]
In general, will depend on the fluid being tested, the capillary diameter, and the flow rate (or pressure drop). However, for a given fluid and a fixed pressure drop, data can be compared between capillaries of differing diameter. [5] Fahræus and Lindqvist noticed two unusual features of their data.