Search results
Results From The WOW.Com Content Network
In this article, the following conventions and definitions are to be understood: The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density.
The proportionality coefficient is the dimensionless "Darcy friction factor" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as π , the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the roughness height to the hydraulic diameter ).
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
where: = (), = = (), is the modified Reynolds number, is the packed bed friction factor,; is the pressure drop across the bed,; is the length of the bed (not the column), is the equivalent spherical diameter of the packing,
where the eponymous μ(I) is a dimensionless function of I.As with Newtonian fluids, the first term -Pδ ij represents the effect of pressure. The second term represents a shear stress: it acts in the direction of the shear, and its magnitude is equal to the pressure multiplied by a coefficient of friction μ(I).
The two regimes of dry friction are 'static friction' ("stiction") between non-moving surfaces, and kinetic friction (sometimes called sliding friction or dynamic friction) between moving surfaces. Coulomb friction, named after Charles-Augustin de Coulomb , is an approximate model used to calculate the force of dry friction.
The friction drag force, which is a tangential force on the aircraft surface, depends substantially on boundary layer configuration and viscosity. The net friction drag, , is calculated as the downstream projection of the viscous forces evaluated over the body's surface. The sum of friction drag and pressure (form) drag is called viscous drag.