Search results
Results From The WOW.Com Content Network
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]
Multivariate regression attempts to determine a formula that can describe how elements in a vector of variables respond simultaneously to changes in others. For linear relations, regression analyses here are based on forms of the general linear model. Some suggest that multivariate regression is distinct from multivariable regression, however ...
In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable.
Bayesian linear regression applies the framework of Bayesian statistics to linear regression. (See also Bayesian multivariate linear regression .) In particular, the regression coefficients β are assumed to be random variables with a specified prior distribution .
In Gaussian process regression, also known as Kriging, a Gaussian prior is assumed for the regression curve. The errors are assumed to have a multivariate normal distribution and the regression curve is estimated by its posterior mode. The Gaussian prior may depend on unknown hyperparameters, which are usually estimated via empirical Bayes. The ...
In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
The issue is particularly relevant in multivariate and regression problems. Thus, some care is needed to ensure that good starting points are chosen. Robust starting points, such as the median as an estimate of location and the median absolute deviation as a univariate estimate of scale, are common.