Search results
Results From The WOW.Com Content Network
Water (H 2 O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue.It is by far the most studied chemical compound [20] and is described as the "universal solvent" [21] and the "solvent of life". [22]
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases. Dividing one extensive property by another extensive property gives an intensive property—for example: mass (extensive) divided by volume (extensive) gives density (intensive). [9]
Water is an inorganic compound with the chemical formula H 2 O.It is a transparent, tasteless, odorless, [c] and nearly colorless chemical substance.It is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent [20]).
The International Association for the Properties of Water and Steam (IAPWS) is an international non-profit association of national organizations concerned with the properties of water and steam, [1] particularly thermophysical properties and other aspects of high-temperature steam, water and aqueous mixtures that are relevant to thermal power cycles and other industrial applications.
As quoted from this source in an online version of: J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 4; Table 4.1, Electronic Configuration and Properties of the Elements Touloukian, Y. S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Plenum, New York, 1975.
Many of water's anomalous properties are due to very strong hydrogen bonding. Over the superheated temperature range the hydrogen bonds break, changing the properties more than usually expected by increasing temperature alone. Water becomes less polar and behaves more like an organic solvent such as methanol or ethanol.