Search results
Results From The WOW.Com Content Network
This was really only relevant for presentation, because matrix multiplication was stack-based and could still be interpreted as post-multiplication, but, worse, reality leaked through the C-based API because individual elements would be accessed as M[vector][coordinate] or, effectively, M[column][row], which unfortunately muddled the convention ...
Hence, if an m × n matrix is multiplied with an n × r matrix, then the resultant matrix will be of the order m × r. [3] Operations like row operations or column operations can be performed on a matrix, using which we can obtain the inverse of a matrix. The inverse may be obtained by determining the adjoint as well.
The second method is used when the number of elements in each row is the same and known at the time the program is written. The programmer declares the array to have, say, three columns by writing e.g. elementtype tablename[][3];. One then refers to a particular element of the array by writing tablename[first index][second index]. The compiler ...
A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring M n (R) is an associative algebra over R, and may be called a matrix algebra. In this setting, if M is a matrix and r is in R, then the matrix rM is the matrix M with each of its entries multiplied by r.
The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.
Let A be an m × n matrix, with row vectors r 1, r 2, ..., r m. A linear combination of these vectors is any vector of the form + + +, where c 1, c 2, ..., c m are scalars. The set of all possible linear combinations of r 1, ..., r m is called the row space of A.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Given a ring homomorphism R → S of commutative rings and an S-module M, an R-linear map θ: S → M is called a derivation if for any f, g in S, θ(f g) = f θ(g) + θ(f) g. If S, T are unital associative algebras over a ring R, then an algebra homomorphism from S to T is a ring homomorphism that is also an R-module homomorphism.