Search results
Results From The WOW.Com Content Network
The first of the cooling load factors used in this method is the CLTD, or the Cooling Load Temperature Difference. This factor is used to represent the temperature difference between indoor and outdoor air with the inclusion of the heating effects of solar radiation. [1] [5] The second factor is the CLF, or the cooling load factor.
The Template:Heat_index calculates the heat index, for a specified temperature and relative humidity (parameters 1 & 2), using a formula from the U.S. National Weather Service (NWS). [ 1 ] Science
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
C p is therefore the slope of a plot of temperature vs. isobaric heat content (or the derivative of a temperature/heat content equation). The SI units for heat capacity are J/(mol·K). Molar heat content of four substances in their designated states above 298.15 K and at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of ...
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
A sustained wet-bulb temperature of about 35 °C (95 °F) can be fatal to healthy people; at this temperature our bodies switch from shedding heat to the environment, to gaining heat from it. [10] Thus a wet bulb temperature of 35 °C (95 °F) is the threshold beyond which the body is no longer able to adequately cool itself.
Temperature vs. heat load diagram of hot stream (H 2 O entering at 20 bar, 473.15 K, and 4 kg/s) and cold stream (R-11 entering at 18 bar, 303.15 K, and 5 kg/s) in a counter-flow heat exchanger. "Pinch" is the point of closest approach between the hot and cold streams in the T vs. H diagram.