Search results
Results From The WOW.Com Content Network
Deconvolution maps to division in the Fourier co-domain. This allows deconvolution to be easily applied with experimental data that are subject to a Fourier transform. An example is NMR spectroscopy where the data are recorded in the time domain, but analyzed in the frequency domain. Division of the time-domain data by an exponential function ...
In mathematics, Wiener deconvolution is an application of the Wiener filter to the noise problems inherent in deconvolution. It works in the frequency domain , attempting to minimize the impact of deconvolved noise at frequencies which have a poor signal-to-noise ratio .
An example of an experimentally derived point spread function from a confocal microscope using a 63x 1.4NA oil objective. It was generated using Huygens Professional deconvolution software. Shown are views in xz, xy, yz and a 3D representation. In microscopy, experimental determination of PSF requires sub-resolution (point-like) radiating sources.
In image processing, blind deconvolution is a deconvolution technique that permits recovery of the target scene from a single or set of "blurred" images in the presence of a poorly determined or unknown point spread function (PSF). [2] Regular linear and non-linear deconvolution techniques utilize a known PSF.
The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvolution, is an iterative procedure for recovering an underlying image that has been blurred by a known point spread function. It was named after William Richardson and Leon B. Lucy , who described it independently.
Let (+) be an unknown signal which must be estimated from a measurement signal (), where is a tunable parameter. > is known as prediction, = is known as filtering, and < is known as smoothing (see Wiener filtering chapter of [1] for more details).
Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...
The deconvolution technique is simply using an inverse fourier transform to obtain the original fluorescence signal and remove the artifact. [ 19 ] Nevertheless, deconvolution has only been shown to work if there is a strong fluorescence signal or when the noise is clearly identified.