Search results
Results From The WOW.Com Content Network
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. [ note 1 ] [ 4 ] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.
Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11] Two terms with the same indeterminates raised to the same powers are called "similar terms" or "like terms", and they can be combined, using the distributive law, into a single term whose coefficient is the sum of the ...
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
Usually, such a pair's first and second components are called its x and y coordinates, respectively (see picture). The set of all such pairs (i.e., the Cartesian product R × R {\displaystyle \mathbb {R} \times \mathbb {R} } , with R {\displaystyle \mathbb {R} } denoting the real numbers) is thus assigned to the set of all points in the plane.