Search results
Results From The WOW.Com Content Network
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]
Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that a 2, b 2, and c 2 are the areas of the squares with sides a, b, and c, respectively;
A triangle can be uniquely determined in this sense when given any of the following: [1] [2] Three sides (SSS) Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA)
The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
All pairs of congruent triangles are also similar, but not all pairs of similar triangles are congruent. Given two congruent triangles, all pairs of corresponding interior angles are equal in measure, and all pairs of corresponding sides have the same length. This is a total of six equalities, but three are often sufficient to prove congruence ...
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [7] or as a special case of De Gua's theorem (for the particular case of acute triangles), [8] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
Specifying two sides and an adjacent angle (SSA), however, can yield two distinct possible triangles unless the angle specified is a right angle. Triangles are congruent if they have all three sides equal (SSS), two sides and the angle between them equal (SAS), or two angles and a side equal (ASA) (Book I, propositions 4, 8, and 26). Triangles ...