Search results
Results From The WOW.Com Content Network
Sound is defined as "(a) Oscillation in pressure, stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or viscous), or the superposition of such propagated oscillation.
The five basic steps are found equally well whether we are talking about an earthquake, a submarine using sonar to locate its foe, or a band playing in a rock concert. The central stage in the acoustical process is wave propagation. This falls within the domain of physical acoustics. In fluids, sound propagates primarily as a pressure wave.
Harold Owen bases his list on the qualities of sound: pitch, timbre, intensity, and duration [2] while John Castellini excludes duration. [3] Gordon C. Bruner II follows the line of temporal-based deductions in association with musical composition, denoting music's primary components as "time, pitch, and texture."
Example of airborne and structure-borne transmission of sound, where Lp is sound pressure level, A is attenuation, P is acoustical pressure, S is the area of the wall [m²], and τ is the transmission coefficient. Acoustic transmission is the transmission of sounds through and between materials, including air, wall, and musical instruments.
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]
Sound waves have two general characteristics: A disturbance is in some identifiable medium in which energy is transmitted from place to place, but the medium does not travel between two places. Important basic characteristics of waves are wavelength, amplitude, period, and frequency. Wavelength is the length of the repeating wave shape.
The fundamental function of this part of the ear is to gather sound energy and deliver it to the eardrum. Resonances of the external ear selectively boost sound pressure with frequency in the range 2–5 kHz. [2] The pinna as a result of its asymmetrical structure is able to provide further cues about the elevation from which the sound originated.
Sound also resonates within different parts of the body, and an individual's size and bone structure can affect somewhat the sound produced by an individual. Singers can also learn to project sound in certain ways so that it resonates better within their vocal tract. This is known as vocal resonation. Another major influence on vocal sound and ...