When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    Chi-squared distribution, showing χ 2 on the x-axis and p-value (right tail probability) on the y-axis. A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large.

  3. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [23] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.

  4. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    The p-value was first formally introduced by Karl Pearson, in his Pearson's chi-squared test, [39] using the chi-squared distribution and notated as capital P. [39] The p-values for the chi-squared distribution (for various values of χ 2 and degrees of freedom), now notated as P, were calculated in (Elderton 1902), collected in (Pearson 1914 ...

  5. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom, . The chi-squared statistic can be also calculated as

  6. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Modern significance testing is largely the product of Karl Pearson (p-value, Pearson's chi-squared test), William Sealy Gosset (Student's t-distribution), and Ronald Fisher ("null hypothesis", analysis of variance, "significance test"), while hypothesis testing was developed by Jerzy Neyman and Egon Pearson (son of Karl).

  7. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The statistical significance of each B is tested by the Wald Chi-Square—testing the null that the B coefficient = 0 (the alternate hypothesis is that it does not = 0). p-values lower than alpha are significant, leading to rejection of the null. Here, only the independent variables felony, rehab, employment, are significant ( P-Value<0.05.

  8. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is asymmetric, only assuming positive or zero values, and has only one tail, the ...

  9. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =