When.com Web Search

  1. Ad

    related to: similarity of triangles ratio formula

Search results

  1. Results From The WOW.Com Content Network
  2. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides. Two right triangles are similar if the hypotenuse and one other side have lengths in the ...

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Any similar triangles have the property that if we select the same angle in all of them, the ratio of the two sides defining the angle is the same regardless of which similar triangle is selected, regardless of its actual size: the ratios depend upon the three angles, not the lengths of the sides.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse. The triangle shaded blue illustrates the identity 1 + cot 2 ⁡ θ = csc 2 ⁡ θ {\displaystyle 1+\cot ^{2}\theta =\csc ^{2}\theta } , and the red triangle shows that tan 2 ⁡ θ + 1 = sec 2 ⁡ θ {\displaystyle \tan ^{2 ...

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Proof using similar triangles. This proof is based on the proportionality of the sides of three similar triangles, that is, upon the fact that the ratio of any two corresponding sides of similar triangles is the same regardless of the size of the triangles. Let ABC represent a right triangle, with the right angle located at C, as shown on the ...

  6. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  7. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The corresponding sides of similar triangles have lengths that are in the same proportion, and this property is also sufficient to establish similarity. [39] Some basic theorems about similar triangles are: If and only if one pair of internal angles of two triangles have the same measure as each other, and another pair also have the same ...

  8. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Dissecting the right triangle along its altitude h yields two similar triangles, which can be augmented and arranged in two alternative ways into a larger right triangle with perpendicular sides of lengths p + h and q + h. One such arrangement requires a square of area h 2 to complete it, the other a rectangle of area pq. Since both ...

  9. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    In this right triangle: sin A = a/h; cos A = b/h; tan A = a/b. Trigonometric ratios are the ratios between edges of a right triangle. These ratios depend only on one acute angle of the right triangle, since any two right triangles with the same acute angle are similar. [31]