Search results
Results From The WOW.Com Content Network
Several factors make placing a spacecraft into an areostationary orbit more difficult than a geostationary orbit. Since the areostationary orbit lies between Mars's two natural satellites, Phobos (semi-major axis: 9,376 km) and Deimos (semi-major axis: 23,463 km), any satellites in the orbit will suffer increased orbital station keeping costs due to unwanted orbital resonance effects.
Geostationary satellites are launched via a temporary orbit, and then placed in a "slot" above a particular point on the Earth's surface. The satellite requires periodic station-keeping to maintain its position. Modern retired geostationary satellites are placed in a higher graveyard orbit to avoid collisions.
For Earth this means a period of just under 12 hours at an altitude of approximately 20,200 km (12,544.2 miles) if the orbit is circular. [16] Molniya orbit: A semi-synchronous variation of a Tundra orbit. For Earth this means an orbital period of just under 12 hours. Such a satellite spends most of its time over two designated areas of the ...
A satellite in areosynchronous orbit does not necessarily maintain a fixed position in the sky as seen by an observer on the surface of Mars; however, such a satellite will return to the same apparent position every Martian day. The orbital altitude required to maintain an areosynchronous orbit is approximately 17,000 kilometres (11,000 mi).
A synchronous orbit around Earth that is circular and lies in the equatorial plane is called a geostationary orbit. The more general case, when the orbit is inclined to Earth's equator or is non-circular is called a geosynchronous orbit. The corresponding terms for synchronous orbits around Mars are areostationary and areosynchronous orbits.
The diagram shows a Hohmann transfer orbit to bring a spacecraft from a lower circular orbit into a higher one. It is an elliptic orbit that is tangential both to the lower circular orbit the spacecraft is to leave (cyan, labeled 1 on diagram) and the higher circular orbit that it is to reach (red, labeled 3 on diagram).
Within this oval-shaped orbit, the satellite will alternately swing out to 22,300 miles (35,890 km) high and then back down to an altitude of only 100 miles (160 km) above the Earth (223 times closer). Then, at a planned time and place, an attached "kick motor" will push the satellite out to maintain an even, circular orbit at the 22,300-mile ...
Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close ...